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The classical collisionless analysis displaying the occurrence of slow and fast rigid body rotation

modes in magnetized plasmas is extended to collisional discharges. Collisions speed up the fast

mode, slow down the slow one, and break down the classical Brillouin limit. Rigid body rotation

has a strong impact on transport, and a collisional radial transport regime, different from the

classical Braginskii collisional flux, is identified and analyzed. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4929791]

I. INTRODUCTION

Rotation in cylindrical magnetized quasineutral plasma

columns can be (i) induced through the application and con-

trol of a large radial electric field with coaxial or rings elec-

trodes, or (ii) spontaneous as a result of the azimuthal drift

currents, due to the radial ambipolar electric field, supple-

mented by the magnetization currents associated with the

density gradient.

Rotation in cylindrical magnetized quasineutral and non-

neutral plasmas has been widely investigated within the

framework of: (i) plasma centrifuges experiments,1–8 (ii) non-

neutral plasmas physics,9–12 and (iii) thermonuclear magnetic

confinement studies with homopolar devices13–15 or rotating

mirrors.16–19 Besides these classical fields, the general prob-

lem of angular momentum conversion20–22 between static

magnetic field, wave helicity, and plasma vorticity has

received considerable attention in other contexts such as (i)

particle acceleration and magnetic field generation in plasma

channel and plasma bubble,23–25 (ii) resonant particle acceler-

ation and isotope separation with magnetized cylindrical par-

ticles beams,26,27 (iii) mass separation with rotating crossed

fields configurations,28–30 (iv) and plasma propulsion.31,32

Within the framework of most of these various studies,

the problem of angular momentum dynamics in cylindrical

magnetized plasmas has been mainly considered in the colli-

sionless regime where rigid body rotations provide a simple

and universal model;9–12 although, in the collisional regime,

resistive magnetohydrodynamic and perturbative models

have been used to address the issue of collisional dissipa-

tion,33,34 the collisional extension of the universality of rigid

body rotations has never been explored. Rigid body rotation

has been predicted and observed in collisionless plasmas

experiments dedicated to isotope separation in vacuum-

arc35,36 and nonneutral plasmas studies.9,10

In this study, we will consider a two-fluid model and

address the issue of the impact of collisions on the basis of

the extension of the classical collisionless rigid body

solutions; then, transport will be considered, and we will

identify a large modification of the classical Braginskii37 re-

gime of transport. Such a new regime, of the neoclassical

type, is expected as the particle motion displays a supple-

mentary times scales, the full rotation period, beside the

cyclotron one. When the collisionless motion displays two

times scales, collisional transport displays several regimes

because of the occurrence of two controls parameters: the

product of the two collisionless times scales with the colli-

sion frequency. The main purpose of this study is to evaluate

the impact of collisions on Brillouin rotation and the impact

of rotation on collisional transport; the origin of the radial

force balance and, more generally, the details of the plasma

formation will not be considered here.

A precise evaluation of the radial and angular velocities

fields is crucial to understand the dynamics of axially sym-

metric magnetized discharges, such as those used in mass

separation28–30 processes taking advantage of the Brillouin

limit.12 We address this issue and show that the canonical

vorticity and the generalized Hall parameter, to be defined

below, are key quantities controlling the interplay between

magnetization, rotation, and collisions.

The main effect of collisions is that the second order

algebraic equation whose small and large roots determine

the slow and fast classical collisionless angular velocities9–12

becomes a fourth order equation when collisions are taken

into account; we solve and study this latter equation. We

identify and analyze the neoclassical regime (we call this

new transport regime neoclassical as the effect of rotation

here is similar to the effect of rotational transform in screw

pinches or in the Pfirsch-Schl€uter regime of tokamaks) and

compare it to the classical Braginskii regime.

The sum of the electrostatic potential energy �e/ plus

the particles chemical potential kBTlnðn=n0Þ (n is the density,

T the temperature, kB the Boltzmann constant, and �e the

particle charge), the electrochemical potential or free energy

per particle, provides a free energy content whose gradient is

the source which drives spontaneous plasma rotations, but

this classical collisionless angular momentum generation

mechanism will appear to be supplemented by a second
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collisional process: part of the radial outward momentum

flux, associated with the particles collisional flux, from the

central part near the axis of the discharge toward the edge, is

converted by the axial magnetic field into an azimuthal flow

leading to a rotation, and part of the azimuthal flux is con-

verted by the axial magnetic field into a radial flow leading

to transport. That collisions must have an impact on classical

collisionless rigid body rotations is obvious but the trend of

this impact is difficult to access on a purely phenomenologi-

cal basis. On the one hand, collisions induce a radial flux,

and the magnetic force transforms this radial outward flow

into an azimuthal flow and we can expect an increase of the

rotation with respect to the collisionless regime, but, on the

other hand, collisions damp the azimuthal flow and we are

led to the conclusion that the angular velocity will decrease

when the collision frequency increases; thus, a definite an-

swer to the problem of the interplay between azimuthal rota-

tion, radial escape, and collisions requires a deeper analysis

which is provided by this paper and leads to the conclusion

that the collisionless fast mode is accelerated and the slow

one is decelerated; thus, both increasing and decreasing

acceleration tendencies are at work.

The two-fluid model used to derive these new results

about azimuthal rotation around the axial magnetic field and

radial transport across the field is then compared with the

single particle behavior. Both fluid and single particle analy-

sis are shown to provide a unified and coherent picture of the

azimuthal and radial dynamic in collisional, magnetized, axi-

ally symmetric, plasma discharges.

Two main classes of rotational motions can be consid-

ered for a cylindrical magnetized plasma column: (i) sheared

rotations and (ii) rigid rotor rotations, the first class is typi-

fied by the so called Keplerian rotations where the azimuthal

velocity vh decreases as the inverse of the radius

vhðrÞ � vr0=r. Keplerian rotations are well documented in

neutral fluid dynamics as they describe singular vorticity

fields. For rigid body rotation, the azimuthal velocity vh is

proportional to the radius vhðrÞ � Xr. Both Keplerian and

rigid body rotations can be matched together to construct the

so called Rankine vortex, which provides the most useful

modeling of localized vorticity in fluid and plasma

dynamics.

To describe a collisional magnetized plasmas column,

all along this paper, we will consider the generic discharge

model depicted in Fig. 1. Near the discharge axis, we will

consider a rigid body type of rotation vhðrÞ � Xr as an ap-

proximate model for an edge sheared rotation. This approxi-

mation is relevant in the central part of the discharge, but

obviously breaks down near the wall where viscosity damps

the rotational motion in order to match the wall zero veloc-

ity.38 This matching takes place in a viscous boundary layer;

similarly, the quasineutral approximation breaks down near

the wall and near the top and bottom plates, where the field

lines end up, in order to insure the equality of positive and

negative charge fluxes through a non-neutral sheath layer.

Note that quasineutrality is in fact mostly insured by the

fluxes along the field lines and the study of the global charge

balance requires a full 3D model of the discharge. Despite

the simplifying assumption of constant angular velocity near

the center, away from the viscous boundary layer, the analy-

sis of spontaneous rigid rotor rotations is less straightforward

in the collisional case than in the collisionless case. As the

problem is more intricate, the rotation fulfills a fourth order

algebraic equation which is derived, solved, and analyzed in

Sec. IV. The smallest root is the one which arises spontane-

ously in magnetized collisional discharges experiments.

Rigid body rotations described and analyzed in this pa-

per, are expected to provide a relevant model of azimuthal

flow near the axis of magnetized discharge where weakly

ionized plasma behave as an inviscid fluid; near the wall,

sheath non-neutral layer and viscous boundary layer break-

down both the quasineutral hypothesis and the rigid body

assumption. The study presented here is restricted to the

equilibrium of the central part of the discharge. The issue of

the matching of the solid body rotation to the sheared rota-

tion in the viscous layer is not addressed, as well as the issue

of the matching of the quasineutral model to the sheath edge.

The important issue of rotating plasmas instabilities channel-

ing part of the free energy into electrostatic modes is also out

of the task of the present study. Besides azimuthal flow in

axially magnetized discharges, we analyze also the impact of

rotation on the radial flow and show that, despite the inclu-

sion of centrifugal forces in the Braginskii fluxes,37 we do

not recover classical collisional fluxes. The new results

derived in this study will be relevant for discharges lifetimes

larger than the collision time where the radial flux is to be

evaluated with the rotational correction and for rotation ve-

locity smaller or of the order of the collision frequency

where the Brillouin relations are to be corrected with colli-

sional effects.

This paper is organized as follows. In Sec. II, we

review the definition of the canonical vorticity of the elec-

tron and ion populations in a weakly ionized magnetized

discharge. The conservation of canonical (magnetized) vor-

ticity is reviewed in this introductory section. In Sec. III,

we review the classical rigid body rotation analysis of a col-

lisionless plasma. Section IV is dedicated to a formal study

of the fully collisional regime. The stream function and

velocity potential, which usually clarify two dimensional

fluid flow problems, are shown to be fairly simple for a

FIG. 1. Vorticity, density, and potential profiles in a magnetized discharge.
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magnetized collisional plasma discharge. These stream

functions and a velocity potential are used to establish the

equation fulfilled by the ions and electrons angular veloc-

ities and the slow collisional rotation modes is analyzed.

We show that collisions increase the fast rotation and

decrease the slow rotation. The problem of (neoclassical)

radial transport is addressed in Sec. V. We summarize our

findings and conclude in the last section. All along this pa-

per when we drop the index i or e, it means that the relation

is valid for both electrons and ions. We use either the word

rotation or vorticity for X although fluid vorticity 2X is two

times the fluid rotation X.

II. CANONICAL VORTICITY CONSERVATION

Here, we will prove, starting from two different points

of view, first from symmetry considerations and then through

fluid equations summation, that the sum of the fluid vorticity

plus the cyclotron pulsation obeys a global conservation law.

This quantity is the canonical vorticity21,22 of a given popu-

lation. This canonical vorticity will be used to define a gen-
eralized Hall parameter a along the classical definition of

the Hall parameter. The generalized Hall parameter will

prove to be very useful for the study of rigid body collisional

rotations.

Consider, in Fig. 1, a cylindrical weakly ionized plasma

discharge immersed in a static homogeneous magnetic field

B ¼ Bb ¼ r� A, where A is the vector potential. The vari-

ous vector fields are described with respect to a cylindrical

basis (er; eh; ez ¼ b) whose axial direction is oriented along

the magnetic field. Electron and ion cyclotron frequencies, xe

and xi, are defined through relations: xe¼ eB/m¼ er� A

� b=m and xi¼ eB / M¼ er� A � b=M. For each population,

electrons, ions, and neutrals, classical vorticities 2Xe; 2Xi,

and 2Xg are defined through the relation 2X ¼ r� v � b.

The notations for velocities v, charge e and masses m and M
are standard. Before proving that the sum of the vorticity plus

the cyclotron frequency is one of the main dynamical param-

eter of the discharge rotational dynamics, let us demonstrate

that this quantity fulfills a local conservation law.

The ion and electron canonical momentum are defined

as: pi ¼ Mvi þ eA and pe ¼ mve � eA. The vector r� p is

named canonical vorticity and r� v classical vorticity. We

call ng, ni, and ne the neutrals’ density (g), the ions’ (i) den-

sity, and the electrons’ (e) density, and vg; vi, and ve are the

velocities of these populations. The flux of ions, electrons,

and neutrals axial canonical vorticity, r� p � b, is given byX
j¼g;i;e

njvjðr � pj � bÞ ¼ 2ngMvgXg þ niMvið2Xi þ xiÞ

þ nevmeð2Xe � xeÞ: (1)

Because of axial symmetry, the axial canonical angular mo-

mentum is conserved and this conservation in a steady state

discharge requires r �
P

njvjðr � pj � bÞ ¼ 0, where the

index j indicates the electron, ion, and neutral populations

r � ½ngMvg2Xgþ niMvið2XiþxiÞ þ nemveð2Xe �xeÞ� ¼ 0:

(2)

This general identity will be recovered through the analysis

of the fluid linear momentum balance equations describing

the linear momentum collisional exchanges between the

three fluids. That a linear momentum balance provides an

angular momentum conservation relation might look surpris-

ing at first sight; but, when no spin intrinsic angular momen-

tum is involved in the dynamical coupling of a system,

angular momentum balance does not provide any new infor-

mation with respect to linear momentum balance as all angu-

lar momentums are of orbital nature.

In order to keep the inertial terms in the fluid momentum

balance equations, we use a convenient form displaying

explicitly the vorticity through the classical identity ðv � rÞv
¼ rv2=2þ ðr � vÞ � v. Considering the collisional cou-

pling between the three populations,39,40 the balances

between inertial force, electric Coulomb force, magnetic

Laplace force, pressure, and friction forces is

r v2
e

2

� �
þ r� veð Þ � ve ¼ �

e

m
E� e

m
ve � B�rPe

nem

� �e ve � vgð Þ; (3)

r v2
i

2

� �
þ r� við Þ � vi ¼

e

M
Eþ e

M
vi � B�rPi

niM

� �i vi � vgð Þ; (4)

r
v2

g

2

� �
þ r� vgð Þ � vg ¼ �

rPg

ngM
� �eg vg � veð Þ

� �ig vg � við Þ; (5)

where E is the ambipolar or the applied electric field, Pe and

Pi are the electrons and ions pressures, and �i, �e, �eg; and �ig

are the momentum transfer collisions frequencies.

In this paper, we will assume that the neutral density is

constant and neglect neutral depletion due to ionization41–43

and rotation. The interplay between ionization depletion and

centrifugal depletion requires a larger framework; the study

of this interplay will not be addressed here where we keep

the neutral Eq. (5) for the sole purpose of identifying global

vorticity conservation through the exchange between the

three populations.

The set of equations (3)–(5) describes a steady state

plasma flow as a result of both the action of the electric field

E and pressure gradientrP, these two forces induce (i) an az-

imuthal electric drift (the electron and ion Hall currents which

cancels each other) plus (ii) a diamagnetic flow (the electron

and ion Nernst currents which add up together), and these azi-

muthal ion and electron rotations ultimately drive a neutral

rotation through collisional friction. We have neglected both

plasma and gas viscosities; neglecting viscosity implies that

the dynamical exchanges between the various species pre-

serve the conservation of fluid linear momentum so that no

dissipation takes place. Note that friction forces describe mi-

croscopic exchanges between the fluid velocities of the vari-

ous populations and not dissipation associated with dispersion

of energy and momentum among the microscopic degrees of

freedom below the fluid level, as is the case with viscosity.

Fluid momentum conservation breaks down near the wall
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where the neutral gas and plasma develop a thin viscous

boundary layer to accommodate their rotational motions with

the fixed wall, resulting in momentum dissipation and ulti-

mately heating, so we consider a two dimensional fluid flow

near the central part of the discharge far from the top and bot-

tom plates and far from the cylindrical side wall.

Considering an infinite extension along the axial direc-

tion, we restrict the study to a two dimensional fluid motion.

Introducing vorticities and cyclotron frequencies, this leads

to the following form of the momentum balance equations:

r v2
e

2

� �
þ 2Xeb� ve ¼

e

m
r/� xeve � b�rPe

mne

� �e ve � vgð Þ; (6)

r v2
i

2

� �
þ 2Xib� vi ¼ �

e

M
r/þ xivi � b�rPi

Mni

� �i vi � vgð Þ; (7)

r
v2

g

2

� �
þ 2Xgb� vg ¼ �

rPg

Mng
� �eg vg � veð Þ

� �ig vg � við Þ; (8)

where / is the electrostatic potential, E ¼ �r/. Local linear

momentum conservation implies that the momentum losses

by one population is gained by the others and vice versa; this

constraint implies that ngM�eg ¼ nem�e and ngM�ig ¼ niM�i.

Taking the sum of the three equations (6)–(8), multi-

plied by their associated masses and densities, then applying

the curl operator r� on both sides, we get the local canoni-

cal vorticity conservation law

r�
�

MngXgb� vg þMni Xi þ
xi

2

� �
b� vi

þ mne Xe �
xe

2

� �
b� ve

�
¼ 0: (9)

The vectorial identity r� ðb� cÞ ¼ bðr � cÞ is fulfilled as

we assume no axial variations of the discharges parameters,

so Eq. (9) is the very same conservation relation described

by Eq. (2). This conservation law displays clearly the fact

that the quantity of interest to study magnetized plasma rota-

tion is the canonical vorticity, and in view of the importance

of this parameter, we define the generalized Hall parameters

a for electrons e and ions i as

ae=i ¼ 6
xe=i72Xe=i

�e=i
: (10)

In order to study the impact of collisions on rigid body rota-

tion and radial transport and to provide a deeper insight into

the spontaneous and induced collisional rotations problem,

let us first briefly review the main results of the spontaneous

and induced rigid rotor collisionless problem.

III. COLLISIONLESS RIGID ROTOR EQUILIBRIUM

The occurrence of rigid body rotations in magnetized

collisionless plasma columns was established theoretically

and experimentally within the framework of nonneutral plas-

mas studies9–12 and vacuum arc centrifuge isotope separation

studies.3–8 We review here briefly the main results of these

studies.

Both ions and electrons are to be considered, but we will

restrict the study to the ion population, the electron case

being very similar. For collisionless ions, the balance

between inertia, electric Coulomb force, magnetic Laplace

force, and centrifugal and pressure stresses can be written as

Eq. (7) with �i ¼ 0

xi þ 2Xið Þvi � b ¼ r e

M
/þ v2

i

2
þ kBTi

M
ln

ni

n0

� �
: (11)

The electron equation is similar up to a sign. The cross prod-

uct of this relation with the axial unit vector b leads to the

expressions of the ions velocity vi

xi þ 2Xið Þvi ¼ �r
e

M
/þ v2

i

2
þ kBTi

M
ln

ni

n0

� �
� b: (12)

But Eq. (12) does not provide an expression of the velocity

vi as Xi is a function of vi. Equation (12) can be easily inter-

preted in terms of electric drift �r/� b, inertial drift

�rv2
i � b, and diamagnetic flow �rni � b; the main differ-

ence with respect to classical drift theory is the occurrence

of the denominator xi þ 2Xi rather than simply xi as a result

of Coriolis force. As we are interested by the canonical

vorticities xi þ 2Xi, we take the curl (r� vi � b ¼ 2Xi and

@=@z¼ 0) of Eq. (12) to obtain

xi þ 2Xið Þ2Xi ¼ D
e

M
/þ v2

i

2
þ kBTi

M
ln

ni

n0

� �
: (13)

This last relation can be further simplified as, for the colli-

sionless case, no radial flow develops so that the velocity is

purely azimuthal and the Laplacian of this azimuthal compo-

nent is simply given by Dv2
i ¼ 4X2

i . The final result

X2
i þ Xixi ¼

1

2M
D e/þ kBTiln

ni

n0

� �
(14)

is a second order algebraic equation whose solutions give the

two rigid rotor modes as a function of both the electrostatic

potential and the density, the two components of the rotation

being, respectively, associated with the electric drift Hall

current and the diamagnetic Nernst current around the mag-

netic field. The rigid body rotation hypothesis implies that

the right hand side of Eq. (14) must be independent of the ra-

dial position. For the case of uniform non neutral cold ion

ðTi ¼ 0Þ plasma equilibrium, we recover the classical

Brillouin solution12 as kBTilnni=n0¼ 0 and as Poisson equa-

tion relates directly D/ and xpi the ion plasma pulsation:

e/ ¼ �Mx2
pir

2=4. It is worthwhile to note that for a given

population the adiabatic Boltzmann equilibrium: ni ¼ n0 exp

�e/=kBTi is associated with a zero angular velocity solution

as no free energy is available at equilibrium for rotation.

When rotation is present, four radial forces are to be taken

into account: (i) electrostatic and (ii) pressure forces

(whose balance gives rise to Boltzmann equilibrium in
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unmagnetized irrotational discharges), and (iii) centrifugal

force plus (iv) Laplace magnetic force. Thus, a simple bal-

ance between (i) electrostatic and (ii) pressure forces cannot

provide a rotating equilibrium solution. Rather than the elec-

trostatic potential /, let us consider the full electrochemical

potential, the free energy per particle, defined as the sum

e/þ kBTi log ni=n0; this quantity must display a parabolic

profile in order to get a rigid body rotation equilibrium as

D½e/ðrÞ þ kBTi log niðrÞ=n0� must be independent of the ra-

dial position r on the right hand side of Eq. (14) as the left

hand side does not depend of the radius under the homogene-

ous magnetic field and rigid body rotation hypothesis.

We define x�e and x�i such that the density profiles are

given by generalized Boltzmann distributions

ni ¼ n0i exp�Mx�2i r2

2kBTi
exp� e/ rð Þ

kBTi
; (15)

ne ¼ n0e exp� mx�2e r2

2kBTe
exp

e/ rð Þ
kBTe

: (16)

These Gaussian density profiles, already identified and

observed in plasma centrifuge experiments, must not be

considered as dynamical constraints, but as definitions of the

parameters x�e and x�i characterizing the concavities of elec-

tron and ion densities near the discharge axis as depicted in

Fig. 1. With these definitions, the ions vorticity equation (14)

becomes the classical second order algebraic equation: X2
i

þXixi¼�x�2i . This relation is similar to the one occurring

in the classical Brillouin problem, where 2x�i plays the role

of x2
pi the nonneutral plasma frequency; in both cases, these

pulsations provide a measure of the free energy content re-

sponsible for the induced or spontaneous plasma rotation.

Here, this free energy available for spontaneous rotation is in-

ternal: thermal and electrostatic (ambipolar field), and in the

Brillouin problem, it is purely electrostatic and applied.

The occurrence of the exponent mx�2r2=2 6 e/ in place

of 6e/ in the generalized Boltzmann equilibrium Eq. (15)

is not surprising as it is just the classical Lagrangian coupling

Lðvh; rÞ ¼ mv2
h=2 6 evhAhðrÞ7 e/ðrÞ between particles and

fields, where vh ¼ Xr is the azimuthal velocity and AhðrÞ
¼ Br=2 the azimuthal vector potential so that L ¼ mX2r2=2

6 mXxr2=2 7e/ ¼ �mx�2r2=2 6 e/.

The two solutions of the collisionless rigid body rotation

problem are given by the classical formulas already identi-

fied and analyzed within the framework of nonneutral and

quasineutral collisionless plasmas studies

X6i

xi
¼ � 1

2
7

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

x�2i

x2
i

;

s
(17)

X6e

xe
¼ 1

2
6

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

x�2e

x2
e

s
: (18)

The Brillouin limit,12 which will disappear when collisions

are taken into account, can be written as a set of two condi-

tions: 4x�2e =x
2
e < 1 and 4x�2i =x

2
i < 1. These constraints can

be interpreted as follows: the free energy available for radial

expansion must not overcome the magnetic field energy

aimed at confining the plasma otherwise no rigid body rota-

tion equilibrium is possible. The slow and fast rotation

modes are depicted in Fig. 2 (we have restricted the figure to

the electron case, the ion one is similar up to a minus sign)

where we have normalized the angular velocity X to the cy-

clotron frequency x and normalized the measure of the free

energy x� also to x.

Among these two modes, only the slow branches X�e

and X�i are to be considered for the spontaneous rotation

problem. The fast branch needs an initial energy input far

above the discharge thermal free energy content and cannot

be considered as spontaneous but as initially strongly driven.

That the slow mode is indeed the observable mode of sponta-

neous rotation can be proved as follows. Consider the limit

of small rotation, that is, to say, of small chemical potential

gradient (x�e � xe and x�i � xi). Under this assumption,

we can Taylor expand Eq. (18)

X�e ¼
x�2e

xe
þ x�4e

x3
e

þ � � � : (19)

Then, we can identify the meaning of these first two terms of

Eq. (19) within the framework of classical drift theory. In a

cold magnetized discharge, three adiabatic flows are to be

considered: (i) the electric E cross B drift VE, (ii) the dia-

magnetic flow VM, and (iii) the centrifugal inertial drift VC,

whose classical expressions are

VE ¼ �
r/
B
� b; (20)

VM ¼ �
rP� B

neB2
¼ �kBT

rn

eBn
� b; (21)

VC ¼
m VE þ VMð Þ � eh½ �2

r

er � b

eB
: (22)

FIG. 2. Angular velocity of the slow and fast modes as a function of the free

energy parameter x�=x.
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Consider the electron population near the center of the dis-

charge, as a result of the cylindrical symmetry, the density

and potential display parabolic profiles because the density

gradient @n=@r � r and the electric field @/=@r � r, and, as

the pulsations x� are defined as combinations of the concav-

ity plus the slope of the electric field, we can easily check

that the first term of the expansions equations (19) is nothing

but the cross fields plus the diamagnetic azimuthal flow and

that the second term is nothing but the centrifugal drift flow

VE þ VMð Þ � eh ¼
x�2e

xe
r; (23)

VC � eh ¼
x�4e

x3
e

r: (24)

Higher order terms in Eq. (19) can be analyzed as coupling

between drift flows and higher order drifts and the previous

expansions shows that, to the lowest order, the slow mode is

just the sum of the E cross B drift and diamagnetic azimuthal

flows; this confirms that this mode is the spontaneous one. A

definite characterization of the difference between the two

modes will be assessed at the end of this section on the basis

of the energy content compared to the thermal energy con-

tent and will confirm this conclusion.

Several additional hypotheses can be considered to

explore the possibility of equilibrium spontaneous rotations

in plasma discharges. For example, as the difference between

the ions and electrons rotations might provide a free energy

source for instabilities, we can study the consequences of an

isorotation hypothesis, X�e ¼ X�i. This hypothesis severely

constrains the density and potential profiles, as the electron

rotation is far larger than the ion one. In fact, if the free

energy content is dominated by the ambipolar potential, the

dominant term is the E cross B azimuthal drift, which natu-

rally provides isorotation.

IV. COLLISIONAL SLOW MODE DECELERATION

The classical model of one dimensional plasma dis-

charges is a well posed problem;39,40 five unknown func-

tions, the electrons and ions densities, neðxÞ and niðxÞ, the

electrons and ions fluid velocities, veðxÞ and viðxÞ, and the

ambipolar electric potential, /ðxÞ, are solutions of five equa-

tions, electrons and ions mass (charge) balances, electrons

and ions momentum balances, and the constraint on local

quasi-neutrality. Thus, for given neutral density and plasma

temperature, the various densities, velocities, and potential

profiles are determined up to an unknown boundary value,

the central density nðx ¼ 0Þ, which can be separately pre-

dicted on the basis of the global power balance. Then, to

complete the description, this quasineutral solution is to be

matched with the sheath solution to fulfill the constraint of

global steady state neutrality.

The classical model of two dimensional (the radial coor-

dinate r and the axial coordinate z) axisymmetric magnetized

cylindrical discharges also provides a well posed problem;

nine unknown functions, the electrons and ions densities,

neðr; zÞ and niðr; zÞ, the electrons and ions radial fluid veloc-

ities, vreðr; zÞ and vriðr; zÞ, the electrons and ions axial fluid

velocities, vzeðr; zÞ and vziðr; zÞ, the ambipolar electric poten-

tial, /ðr; zÞ, and the electrons and ions vorticities, Xeðr; zÞ and

Xiðr; zÞ, are solutions of nine equations: electrons and ions

mass (charge) conservations, electrons and ions momentum

balances along, across, and around the magnetic field, and the

constraint on local quasineutrality. However, because the na-

ture of this latter problem is different from the former one,

partial differential equations versus ordinary differential equa-

tions, few analytical results are available to understand the

full dynamics of magnetized discharges and simple scaling

between the various equilibrium parameters are not available.

The aim of the present study is to understand part of this

dynamics and to relate the electrons and ions angular rotation

velocities to the radial density and potential gradients. These

quantities can be predicted on the basis of the particle balan-

ces, but this requires the full account of the axial and radial

dynamics and the evaluation of the ratio of the radial plasma

losses toward the wall to the axial plasma losses toward the

top and bottom end plates. We will not consider this full

problem here and will make no use of the electrons and ions

particles conservations equations; thus, keeping only four

unknown, Cre and Cri, the radial particles fluxes, as well as

2Xe and 2Xi the vorticities, and considering only the four

momentum balance equations in the plane perpendicular to

the axial magnetic field, we will end up with a set of rela-

tions between the density, the potential, the vorticities, and

the radial fluxes. This set of relation will be sufficient to ana-

lyze the impact of collisions on both the rigid body rotation

modes and the radial classical collisional transport.

As collisionless rigid body rotations have been observed

in many plasma experiments, we will focus on this class of

solutions and show that such a type of solutions can be found

for collisional plasmas, thus extending the previous results

of collisionless discharges and providing a simple relation to

correlate rotations, radial fluxes, density, magnetic field, and

collisionality in magnetized discharges. The two main differ-

ences with respect to the previous collisionless case will be

the occurrence of a fourth order algebraic equation in the

collisional case as opposed to a second order one in the colli-

sionless case and in the appearance of radial transport.

Helmholtz representation theorem, for an arbitrary con-

tinuously differentiable velocity field in a plane, provides a

canonical decomposition of v as the sum of a curl plus a gra-

dient, the curl being expressed in terms of a stream function

W and the gradient in term of a velocity potential U

v ¼ r�Wb�rU ¼ rW� b�rU: (25)

This classical decomposition Eq. (25) as a sum of an irrota-

tional part plus a solenoidal part is meaningful as the stream

function W can be interpreted as the specific density of angu-

lar momentum b �
Ð Ð Ð
ðr� mvÞdr ¼

Ð Ð Ð
2mWdr around

the discharge axis, and the DU as the specific density of ra-

dial momentum flux �
Ð Ð

mv � ds ¼
Ð Ð Ð

mDUdr. We will

demonstrate that the stream function W and the velocity

potential U provides the right framework to analyze the rota-

tional dynamics of a collisional discharge. We will find that

they are related to the discharge free energy content through

the general relations
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We

ae
¼ Ue ¼

�e

m

m

2
v2

e � e/þ kBTeln
ne

n0

�2
e þ xe � 2Xeð Þ2

; (26)

Wi

ai
¼ Ui ¼

�i

M

M

2
v2

i þ e/þ kBTiln
ni

n0

�2
i þ xi þ 2Xið Þ2

: (27)

This result clearly displays the fact that the velocity poten-

tial U vanishes when the collision frequency vanishes as

the magnetic confinement becomes perfect and no radial

outward flux can be observed. Electron and ion momentum

balances in steady state discharges require that the sum of

the inertial, Coulomb, Laplace, pressure, and friction

forces is equal to zero. This requirement is described by

equations (6) and (7) where we assume that the neutral ve-

locity vg ¼ 0 as the density of this population is several

orders of magnitude larger than the charged particles den-

sity, which means that internal gas viscosity provides a

strong coupling with the wall and that the global inertia

tensor of the neutral gas rotor is far larger than the elec-

trons and ions ones, both effects, inertia and viscosity,

resulting in a strong tendency to remain at rest. Arranging

the unknown electrons and ions velocities on the left hand

side and the equilibrium free energy drive on the right side,

we end up with

ve þ
xe� 2Xe

�e
ve � b¼� 1

m�e
r �e/þmv2

e

2
þ kBTeln

ne

n0

� �
;

(28)

vi �
xi þ 2Xi

�i
vi � b ¼ � 1

M�i
r e/þMv2

i

2
þ kBTiln

ni

n0

� �
:

(29)

For simplicity, we will momentarily drop the i and e indexes

as Equations (28) and (29) can be reduced to the same form

of the type

vþ av� b ¼ �rw: (30)

It can be checked that the general solution of this type of lin-

ear equation can be expressed as the sum of the radial (rw)

and azimuthal (b�rw) components

v ¼ a
1þ a2

rw� b� 1

1þ a2
rw: (31)

We recognize Helmholtz representation of the velocity field

Eq. (25) so that the stream function and the velocity potential

for solid body rotation in collisional magnetized plasma are

given by Equations (26) and (27). Taking the curl and the

divergence of Eq. (31), we can express the angular and radial

velocities as

r� vð Þ � b ¼ �DW ¼ � a
1þ a2

Dw ¼ 1

r

@

@r
rvh ¼ 2X; (32)

r � v ¼ �DU ¼ � 1

1þ a2
Dw ¼ 1

r

@

@r
rvr ¼ 2

X
a
: (33)

The first new result with respect to the collisionless case is

the occurrence of a radial velocity vr in addition to the

azimuthal one vh. Integrating the previous relations

Equations (32) and (33) with respect to the radius gives the

ions and electrons azimuthal vh and radial vr velocities:

vhe ¼ Xer; vhi ¼ Xir and vre¼Xer=ae, vri¼Xir=ai. To

express the angular velocities Xi and Xe as a function of the

plasma parameters, we consider Eq. (32) and restrict the

analysis to the ion case as the electron case is similar up to a

minus sign

2Xi 1þ a2
i

� �
¼ � ai

M�i
D

M

2
v2

i þ e/þ kBTiln
ni

n0

� �
: (34)

We can either look for the rotation pulsation Xi as the

unknown or for the generalized Hall parameter ai as the

unknown; we will consider this latter case. The term associ-

ated with the inertial force free energy, Dv2, can be

expressed as Dv2
i ¼ Dðv2

hi þ v2
riÞ ¼ 4X2

i ð1þ a2
i Þ=a2

i , thus

a2
i �

x2
i

�2
i

 !
1þ a2

i

� �
� 2a2

i

M�2
i

D e/þ kBTiln
ni

n0

� �
¼ 0: (35)

Assuming density profiles of the type Eqs. (15) and (16), we

introduce x� the Laplacian of the chemical potential as in

Section III: x�2 ¼ �D½6e/þ kBTlnðn=n0Þ�=2M so that we

end up with the quadratic equation

a4 þ 1� x2

�2
þ 4

x�2

�2

� �
a2 � x2

�2
¼ 0: (36)

Only one positive roots for a2 is to be considered, and this

leads us to the slow and fast mode expression for the ions

and electrons

X6e

xe
¼ 1

2
6

1

2
ffiffiffi
2
p

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

x�2e

x2
e

� �2
e

x2
e

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

x�2e

x2
e

� �2
e

x2
e

 !2

þ 4
�2

e

x2
e

vuut
vuuut ;

(37)

X6i

xi
¼�1

2
7

1

2
ffiffiffi
2
p

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

x�2i

x2
i

� �
2
i

x2
i

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

x�2i

x2
i

� �
2
i

x2
i

 !2

þ 4
�2

i

x2
i

vuut
vuuut :

(38)

These relations are the collisional counterpart of the colli-

sionless relations Equations (17) and (18), and they express

the fluids solid body rotations as a function of the discharge

parameters. If we consider the limit �¼ 0, we just recover

Eqs. (17) and (18).

We will study the behavior of both the slow and fast

collisional rotation as a function of the collision parameter

x 	 �2=x2 and as a function of the free energy parameter

y 	 4x�2=x2. We have plotted the two branches of Eq. (38)
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in Fig. 3 where the abscissa is
ffiffiffi
y
p

, the ordinate X6=x and

the family of curves is labeled by the parameter x. Clearly,

collisions speed up the fast mode, slow down the slow one,

and breakdown the Brillouin limits, which no longer exist in

this regime. That collisions speed up the fast mode and slow

down the slow one is a direct consequence of the inequality:

1� y� xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� y� xÞ2 þ 4x

q
> 2ð1� yÞ, if x�2 > x2,

which is the case. For a given free energy parameter y, the

behavior of the rotation X=x can be analyzed as a function

of the collision parameter x ¼ �2=x2, and two cases are to

be considered: (i) if y< 1, even in the absence of collisions,

x¼ 0, there exist a finite rotation velocity, (ii) if y> 1, the

collisionless Brillouin limit implies that at small �2=x2 the

rotation velocity converge toward zero. The first case is

depicted in Fig. 4 and the second one in Fig. 5. The transition

between the two regime takes place at the collisionless

Brillouin limit y¼ 1 independently of x.

The fact that the slow mode X� is the one which arise

spontaneously in discharges without initial energy input can

be confirmed as follows. In a collisional discharge, the two

major components of the fluid velocity perpendicular to the

static magnetic field are the E cross B drift VE modified by

the collisions and the diamagnetic flow VM modified by the

collisions. The classical expressions of these two fluid veloc-

ities are given by

VE ¼ �
x2

x2 þ �2

r/� B

B2

 �x2

�2

r/� B

B2
; (39)

VM ¼ �
x2

x2 þ �2

rP� B

neB2

 �x2

�2

kBT

n

rn� B

eB2
: (40)

Expanding Eq. (37) for large � and finite x�=�, we obtain

the following first order terms:

X�e ¼
x�2e

�2
e

xe þ � � � (41)

for the electron population and a similar expression for the

ion one. Near the axis of the discharge, the density gradients

are linear with respect to the radial position, @n=@r � r, as

well as the electric field profile, @/=@r � r, the former being

Gaussian and the latter parabolic as a result of quasineutral-

ity, we obtain

VE þ VMð Þe � eh ¼ x�2e

xe

�2
e

r; (42)

which confirms that the slow collisional rigid body rotation

agree with classical drift theory. A collisional magnetized dis-

charge is determined by the collision frequencies, �i and �e,

the cyclotron frequencies, xi and xe, and the free energy

parameters x�2i and x�2e , near the center of the discharge

quasineutrality provides a relevant hypothesis, and this addi-

tional hypothesis allows to express a further relation between

electron and ions densities. Following the analysis of Sec. III,

plasma density and electrostatic potential turn out to be

Gaussian and parabolic, and they can be interpreted in terms

of characteristic lengths a and b. Based on this relation:

x�2e � v2
Te=a2, so x�2e � ðqLe=aÞ2x2

e and for the electronic

slow branch X�e 
 ðqLe=aÞ2x3
e=�

2
e � xe as expected.

Besides the vorticities, 2Xe and 2Xi, the radial particles

fluxes, Cre and Cri, are to be analyzed in order to complete

the picture of collisional rigid body rotation of magnetized

FIG. 3. Rigid rotor angular velocity as a function of the free energy parame-

ter x�=x for various x.

FIG. 4. Rigid rotor angular velocity as a function of the collision parameter

�=x for various y< 1.

FIG. 5. Rigid rotor angular velocity as a function of the collision parameter

�=x for various y> 1.
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plasma discharges. In the remaining part of this article, we

will restrict our analysis to the slow branch of rigid body

plasma rotations.

V. ROTATION INDUCED TRANSPORT

Classical transport in a magnetized discharge is

described by the linear combination of Ohm and Fick laws,

which are modified to account for the confining influence of

the magnetic field. If we introduce the classical unmagne-

tized mobility l ¼ e=m� and the classical unmagnetized dif-

fusion coefficient D ¼ kBT=m�, the collisional particles flux

Cb? perpendicular to a static magnetic field is given by the

Braginskii relation35,37

Cb?
n
¼ � l

1þ x2=�2
r?u�

D

1þ x2=�2
r?ln

n

n0

; (43)

where x is the cyclotron frequency, n the particle density,

and u the sum of the electrical / and mechanical potentials

acting on the discharge. For a rotating discharge, we have to

consider the influence of the centrifugal potential Xr2=2 in

addition to the ambipolar or applied electrostatic potential /.

The radial electron and ion classical fluxes, Ceb¼Ceb? � er

and Cib¼Cib? � er, are thus given by the relations

Ceb ¼ ne
e

m

�e

�2
e þx2

e

m

e

@

@r

X2
er2

2
þ @/
@r
� kBTe

e

@

@r
ln

ne

n0

 !
; (44)

Cib ¼ ni
e

M

�i

�2
i þx2

i

M

e

@

@r

X2
i r2

2
� @/
@r
� kBTi

e

@

@r
ln

ni

n0

 !
: (45)

We can express these two fluxes as a function of the free

energy parameter 2Mx�2 ¼ �D½e/þ kBTlnðn=n0Þ� for both

electrons and ions in order to get the final form of the

Braginskii fluxes in a rigid body rotating discharge

Ceb ¼ ne
x�2e þ X2

e

�2
e þ x2

e

�er; (46)

Cib ¼ ni
x�2i þ X2

i

�2
i þ x2

i

�ir; (47)

where we have used the previous definition of the free

energy parameter x�2 integrated with respect to the radius:

�Mx�2r ¼ @[e/þ kBTlnðn=n0Þ]=@r. The relations equa-

tions (37) and (38) describe the impact of collisions on the

azimuthal motion. The radial dynamics for collisional rigid

body rotations can be described through the integration of

relation equation (33) with respect to the radius. The radial

flux of particles associated with collisional rigid body rota-

tions for electrons Cen and ions Cin is

Cen ¼ ne
X�e

a�e
r ¼ ne

X�e

xe � 2X�e
�er; (48)

Cin ¼ ni
X�i

a�i
r ¼ �ni

X�i

xi þ 2X�i
�ir: (49)

The index n refers to a neoclassical flux because these dissipa-

tive fluxes are different from the classical Braginskii fluxes

Eqs. (46) and (47), under the same electric, rotational, and

pressure constraints. As we are considering only the slow

branch, for ions, both Xi and ai are negative, and for electrons,

both Xe and ae are positive, so that the radial fluxes are always

directed from the center toward the edge. The origin of the

difference between Cn and the classical Braginskii flux Cb is

similar to the origin of the difference between the neoclassical

and classical fluxes with a rotational transform in screw

pinches. This difference must be traced back to the orbit dif-

ference between a simple cyclotron motion and the combina-

tion of a cyclotron motion and a rotation of the guiding center.

It is worth noting that, as shown in Appendix A, these

results can be recovered using a single particle orbit analysis

if assuming a particular choice of orbit. The formula for the

rigid body rotation is then the same as the one found above

with a fluid analysis, Equations (37) and (38), provided that

we consider the free energy content, which is purely electro-

static here rather than thermal and electrostatic for the fluid

model, on the same footing for both models. Moreover, the

frictional damping, which induces a damping at the orbital

level and a dissipative radial flux at the fluid level, can be

interpreted as a radial flux, which turns out to display the

same neoclassical expression than that discovered for the

fluid model, Equations (48) and (49). This convergence of

results provides a strong validation of the obtained results.

In order to quantify the impact of rigid body rotation on

radial transport, we introduce the ratio of the neoclassical

flux to the classical flux and restrict the analysis to the ion

case as the electron case is qualitatively similar

Cin

Cib
¼ �

1þ �2
i

x2
i

1þ 2X�i

xi

X�i

x
x�2i

x2
i

þ X2
�i

x2
i

; (50)

where X�i is given by Eq. (38). For a given collision parame-

ter x ¼ �2=x2, the ratio of the neoclassical flux to the classi-

cal flux Cn=Cb can be analyzed as a function of the free

energy parameters y ¼ 4x�2=x2. We have displayed in Fig. 6

the set of curves covering the weak collisionality regime; the

FIG. 6. Normalized radial flux for large values of the free energy parameters

x�=x and x< 2.
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ratio Cn=Cb � 1 is reached when x�2=x2 � 0 and x�2=x2

� þ1 as expected. In the range x�2=x2 � 1 for weakly

magnetized and weakly collisional plasma, the ratio Cn=Cb

can reach significant values. This justifies a deeper analysis

of this regime x�2=x2 � 1, which is displayed in Fig. 7. The

fact that, at low collisionality, near the value 4x�2=x2 � 1

we observe a steepening of the curve can be explained by the

fact this value is precisely the Brillouin limit for collisionless

discharges. We also find a change of behavior for x � 2, the

flux ratio Cn=Cb switch from Fig. 6 behavior to a monotonous

decreasing function from 1 to 0, still converging to 1 for large

�=x or small x�=x. This behavior is due to the occurrence of

a maximum of the classical collisional factor �=ðx2 þ �2Þ
when x � �. The convergence toward Cn=Cb � 1 for large �
and finite x�=� can be confirmed through a Taylor expan-

sions of Equations (37) and (38): �2
e X�e 
 xex�2e and �2

i X�i


 �xix�2i , then Eqs. (48) and (49) give Cen 
 neX�e�er=xe

and Cin 
 �niX�i�ir=xi, and finally, the first order terms

of Eqs. (46) and (47) Ceb 
 neX�e�er=xe and Cib


 �niX�i�ir=xi. Thus, both classical and neoclassical fluxes

matches for large � and finite x�=�.

VI. SUMMARY AND CONCLUSION

In this study, we have shown that the classical rigid

body motion of a magnetized collisionless plasma column

can be extended to collisional discharges and that this exten-

sion is physically meaningful. The energy content of the

slow mode is far below the free energy content of the dis-

charge so that it channels only a small fraction of this con-

tent. This clearly indicates that this rotation mode arises

spontaneously, as the Taylor expansion of its vorticity exhib-

its the occurrence of electric drift and diamagnetic flow pro-

viding the coupling mechanism between the electrochemical

potential (6e/þ kBTlnðn=n0Þ) drive and the mechanical

rigid body vorticity 2X.

Two quantities are particularly useful to understand this

coupling and the energy channeling from the electrochemical

potential to the rotational degree of freedom: (i) the canonical

vorticity 2X 6 x and (ii) the generalized Hall parameter a.

The results presented and analyzed here are relevant to the

central part of a magnetized cylindrical plasma column, away

from the lateral wall, where viscosity comes into play, and

far from the top and bottom plates, where the field line ends

up and the plasma flow displays sheath. Near these plates, the

dependency on the axial coordinate must be considered in

order to account for the particles fluxes along the field line.

Under these assumptions, we have expressed the four

unknowns, Cre and Cri, the radial particles fluxes, and 2Xe

and 2Xi, the axial vorticities, as a function of the discharge

parameters on the basis of the four momentum balance equa-

tions in the plane perpendicular to the axial magnetic field.

These results are summarized by Eqs. (37) and (38) for the

vorticities and (48) and (49) for the fluxes.

Similar to the crossover from electric coupling e/ to

magnetic coupling ev � A, we have identified the occurrence

of a neoclassical regime of radial transport due to the differ-

ence between classical cyclotron orbits and rigid body

orbits. Further insight to this problem can be gained if

we consider the fraction of entropy production dS/dt
which is diverted from the radial dissipative out flow to the

rigid body rotation: dSh=dSr ¼ ðdSh=dtÞ=ðdSr=dtÞ ¼ �v2
h=

�v2
r ¼ a2; thus, the generalized Hall parameter provides a

direct measure of this entropy production channeling ratio.

The very simple picture provided by a single particle

analysis has been shown to be coherent with a fluid model.

Further studies on the stability of the slow collisional modes,

on the kinetic theory of the neoclassical fluxes and on the

matching to the viscous boundary layer remain to be done to

build a complete picture of rigid rotor vorticity generation,

sustainment, and transport in plasma discharges.
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APPENDIX A: SINGLE PARTICLE ORBIT VERSUS
FLUID MODEL

We will address the issue of collisional rigid body rota-

tion within the framework of single particle orbit analysis.

This type of model will necessarily miss the diamagnetic

effect associated with the radial pressure gradient, but it will

keep the electric field drift.

Consider a charged particle interacting with a magnetic

field such that x is the cyclotron frequency and � the friction

frequency. In addition to these conservative and dissipative

forces, we take into account a linear electric field described

by a quadratic potential similar to the quadratic electrostatic

potential encountered in the fluid model. The equation for

the particle orbit rðtÞ is given by

d2r

dt2
¼ x�2rþ x

dr

dt
� ez � �

dr

dt
; (A1)

where x� describe the concavity of the parabolic electro-

static potential. This equation is then projected on a

Cartesian basis ðex; eyÞ perpendicular to the magnetic field

FIG. 7. Normalized radial flux for small values of the free energy parameters

x�=x.
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directed by the unit vector ez. We introduce the complex

variable ZðtÞ 	 xðtÞ þ jyðtÞ. The orbit perpendicular to the

magnetic field is described by the complex ordinary differen-

tial equation

d2Z

dt2
þ � þ jx½ � dZ

dt
� x�2Z tð Þ ¼ 0: (A2)

As this equation is linear, which was not the case for the fluid

model, we look for solutions of the type ZðtÞ ¼ Z0 exp jXt,
where Z0 is a complex constant. The unknown pulsation X is

a solution of the algebraic equation

X2 þ ðx� j�ÞXþ x�2 ¼ 0 (A3)

which is easily solved as the sum of two rotations associated

with the small and the large root

2X ¼ �xþ j�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� j�Þ2 � 4x�2

q
: (A4)

It might look surprising that the fluid model gives a fourth

order equation (36) and the particle model a second order

equation (A3); this is a consequence of the fact that the fluid

model deals with real variables and the particle one with

complex one, so Eq. (A3) can be interpreted as two coupled

second order real algebraic equation whose decoupling pro-

vides a fourth order equation. The real and imaginary part of

Eq. (A4) can be expressed as

Re X½ � ¼ X7 ¼ �
x
2

6
1

2
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4x�2 � �2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4x�2 � �2ð Þ2 þ 4�2x2

qr
; (A5)

Im X½ � ¼ c7 ¼
�

2
7

1

2
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ 4x�2 þ �2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4x�2 � �2ð Þ2 þ 4�2x2

qr
; (A6)

where Eq. (A5) is nothing but the fluid relation Eq. (38). The

general single particle orbit is given by the linear combina-

tion ZðtÞ ¼ Zþ exp jðXþ þ jcþÞtþ Z� exp jðX� þ jc�Þt. In

order to match the slow mode rigid body rotation, we have to

restrict to Zþ ¼ 0.

The interpretation of the imaginary part c� requires a

further analysis to match the fluid results. If we consider

the solution ZðtÞ ¼ Z0 exp jðX� þ jc�Þt, we end up with a

damped or an escaping orbit. To get an understanding of the

link between this orbit and the neoclassical fluid flux stud-

ied in Sec. V, we construct the ratio, Eq. (A7), of the radial

particle velocity vr¼ dr/dt divided by the radial position

rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ y2ðtÞ

p
and we restrict the analysis to the

slow mode ZðtÞ ¼ Z0 exp jðX� þ jc�Þt

vr

r

				
particle

¼ 1

r

dr

dt

				
particle

¼ Re
Z tð Þ d

dt
Z� tð Þ

Z tð ÞZ� tð Þ

2
4

3
5
¼ �c�: (A7)

Using Eqs. (33) and (10), the very same ratio of the radial

velocity to the radial position can also be calculated within

the fluid model, with

vr

r

				
f luid

¼ � 1� x
xþ 2X�

� �
�

2
: (A8)

Injecting Eqs. (A5) into (A8) yields the same result, that is,

to say,

vr

r

				
f luid

¼ �c�: (A9)

This set of result might lead to the conclusion that a single

particle model provides a shorter path to the fluid results con-

cerning slow rigid body rotation and neoclassical fluxes. On

the one hand, this is true in terms of formula, but, on the

other hand, the identification of the radial neoclassical flux

and the inclusion of the diamagnetic pressure effect in x�

can only be achieved with a fluid picture. As usual in plasma

physics, this is the interplay between fluid and particles pic-

tures, which provides an understanding of the dynamics

rather than a restricted fluid or particle model alone.
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